If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10y^2+5y-15=0
a = 10; b = 5; c = -15;
Δ = b2-4ac
Δ = 52-4·10·(-15)
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{625}=25$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-25}{2*10}=\frac{-30}{20} =-1+1/2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+25}{2*10}=\frac{20}{20} =1 $
| 10y+5y-15=0 | | 6+4c=10 | | 35=x+7+6× | | -6-7x=22-3x | | n^2-117=-4n | | 360=(9x-1)+(8x+4)+(13x-3)+90 | | 4y2+16y+7=0 | | 4(6-y)=20 | | X^2+y^2+4y+1=0 | | 2/3x+1=-4 | | 7x+40=6x+72 | | r3− 2= 2 | | n(n+2)*10^78n^2=224 | | 4-m➗5=18 | | 7x+40+6x+72=180 | | 3+2d=17 | | 48-10x=18 | | n+4+8n-10=2n+3+3(2n-1) | | -19.9=2.4+y/7 | | 3x+3=4+3+x | | 360=(9x-1)+(8x+4)+(13x-3) | | 2(5c-1)=7c+5 | | -4+3u=-22 | | 6^(x+1)=19 | | 6^x+1=19 | | 2n=35=106 | | -4/8=h | | -4.9t^2+39.2t=0 | | 40+s=5 | | 5x+4=94 | | 169=25+x^2 | | -2-2=d |